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Abstract

We consider the problem of estimating and comparing inequality in income distri
butions. In particular, we develop asymptotically distribution-free procedures for
testing against intersecting Lorenz curves. We also propose and study an asymptot-
ically distribution-free nonparametric estimator for a measure of income inequality

introduced by Zenga.
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ON NONPARAMETRIC INFERENCE FOR THE COMPARISON OF SOME MEA-
SURES OF INCOME INEQUALITY
Foreword

The theory and practice of inequality measurement is a rich source of economic
literature which dates back a century ago with the pioneering contributions of Parcto
[42], Lorenz [39] and Gini [27]. Each provided equally valuable insights which paved
the way for a new and fascinating field of quantitative research and policy implications
on income inequality. A second wave of economists, namely, Atkinson [1], Kolm
[37], Sen [49] and Shorrocks [51] brought the normative concept of income inequality
into perspective. They either proposed alternative measures of income inequality
based on this normative empirical criteria or provided a stronger environment for the
ranking of income distributions by imposing certain constraints on the social welfare
function. While the statistical contributions to this field of rescarch have somehow
lagged behind the economic conceptual framework, these past two decades saw the
emerging awareness among economists of the importance of statistical methodologies
in this area.

The basic groundwork for this research rests on the curve introduced by M.O.
Lorenz and now named after him. The Lorenz curve is frequently used to describe
and compare inequality in income or wealth distribution. The Lorenz curve also un-
derlies social welfare rankings of alternative distributions and is the basis of several
summary measures of income or wealth inequality, the most popular of which is the
Gini concentration coefficient (Gini [27]). The complete Lorenz Curve allows one to
look at the detailed structure of inequality and to identify those regions of a distri-
bution where significant inequality differences occur. Prior to 1981, Lorenz curves
have essentially been used as descriptive devices, the reasons attributable to several
factors (see Nygard and Sandstrom [41] for a complete discussion). For instance,
applied researchers prefer to work and base inequality cornparisons on standard sum-

mary measures for which confidence intervals have been worked out (see Gastwirth

i
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and Gale [25]) and Kakwani [32]. Partly another deficiency in the use of the Lorenz
Curve for formal statistical inference is due to methodologies which require an as-
sumnption that data come from a specified distribution. A prior assumption such as
this is likely not to be true in general. Sendler [50] provided the impetus towards
asymptotically distribution-free procedures for Lorenz Curves. He considered the
problem of estimating the theoretical Lorenz curve from data. Beach and David-
son [9], Beach and Richmond [10], Bishop et. al.[11], Gastwirth and Gale [26] and
Richmond [15] advance on these results. Gastwirth [25] proposed scale-free tests for
exponentiality based on the Lorenz curve and Gini statistic. Chandra and Singpur-
walla [13] stated a weak convergence result for empirical Lorenz processes. It was
Goldie [28] who provided a thorough convergence for empirical Lorenz and what he
calls concentration processes.

Chandra and Singpurwalla [13] heightened this momentum by introducing an
int~resting relationship between reliability and the Lorenz curve and were the first
te .oint out the relation between the total time on test (TTT), which is heavily
used in reliability, and the theoretical Lorenz curve. Csorgo et. al. [14] built up a
unified asymptotic theory for empirical TTT, Lorenz and In this thesis, we formulate
statistical procedures which can be used as tools for formal statistical inference in the
area of income inequality.

The thesis is divided into four chapters. Chapter 1 discusses the terms, concepts,
economic rationale and motivation used throughout the paper. In Chapter 2, we
forn:alate hypothesis testing procedures for intersecting Lorenz curves. ‘Crossing-
Over’ Lorenz curves are comrmon in empirical work, hence we attempt to devise
asymptotically distribution-free procedures to account for such real-world situations.
In Chapter 3, we will adopt Aly’s [2] hypothesis-testing procedure for the Lorenz
Curve to the Generalized Lorenz curve suggested by Shorrocks [51]. The use of
generalized Lorenz curves in ranking income distributions generally results in more

income distributions being ranked. Finally, in Chapter 4, we present asymptotically

iv
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distribution-free methodologies for the concentration index Z introduced by Zenga

[54].
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Chapter 1
Introduction

The economic and statistical basis of the researches in this thesis are discussed in this

chapter.

1.1 Definitions and Terms

1.1.1 The Lorenz Curve

Let F(-) be the distribution function of a nonnegative random variable with positive
finite mean u,i.e. F(0-) =0 and [°zdF(z) = p, 0 £ p < oo. The Lorenz curve

(LC) of F is defined for 0 < p < 1 as

1
L(p)-;/o Frl(t)dt, (1.1)

where F~'(y) = inf{z : F(z) > y} is the right continuous inverse of the right con-
tinuous F(-) and an integral with endpoints ‘a’ and ‘b’ means integration over the

interval [a,b).

Let ry,7,,...,7, be a random sample from F. An empirical analogue of L(p) is:
1 [l
L.(p)=— imy 1.2
(P) = — Z-‘;I (1.2)
where #y.,,T2.n,....Tn;n are the order statistics of the X sample, [t] denotes the

integer part of t and 7 is the sample mean. We also employ the notation L. (p) to
denote the empirical Lorenz curve for the income vector z.

When the income units are arranged in increasing order of their incomes, the

Lorenz curve is then the locus of points (p, L(p)) where L(p) is the proportion of

1
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total wealth accounted for by the p'»% of the poorest individuals. The curve is an
increasing convex function with endpoints L(0) = 0 and L(1) = 1.

The 45° line called the complete-equality or egalitarian line corresponds to L(p) =
p in the unit square. Typically, a Lorenz curve is bow - shaped below this line
and income inequality is said to increase as the bow is bent more. Note that the
Lorenz curve is scale invariant, that is, it is not susceptible to the particular monetary

denomination used to rmeasure income.

1.1.2 The Generalized Lorenz Curve

The generalized Lorenz (GL) curve of F is simply defined as the Loienz curve scaled

up by the mean of the distribution, that is, for 0 < p < 1,

GL(p) = pL(p),

where u is the mean of the distribution /" and L(-) is the corresponding Lorenz curve.
The GL has the same property as the ordinary LC except that the GL curve is not
invariant to the monetary denomination used to measure income. It is continuous,
convex and nondecreasing in the unit interval. It starts at the origin (8,0) and ends
in (1, z2). The slope of the diagonal is p,. The height reflects the levels of incomes,
while the curvature indicates the degree of income inequality. The corresponding

empirical analogue is:

[np]

GLn(p) = '};Zl'i:n) (13)

where z;., is the ith ordered income. We also employ GL.(p) to denote the empirical

Lorenz curve for the income vector z.

1.2 Economic Concepts

Basic Economic Definitions
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1. Utility function is a formula showing the total satisfaction of consuming a par-
ticular commodity bundle.

2. Social welfare function W(-) (SWF) is a function that relates the welfare of a
society to the utilities of its members. Algebraically, if there are n individuals
in society, W is a function of individual utilities, W = W(U,;,U,,...,U,). It is
assumed that a change that makes someone better off without making anyone

worse off increases social welfare.

3. Pareto improvement is a reallocation of resources that makes at least one person

better off without making anyone else worse off.

4. Income is a flow of money earned during a period while wealth is a net stock of

assets owned at a point in time.

Principle of transfers allows income of some people to fall, provided that incomes

(4]

of others, who are poorer, increase by at least the same amount.

Measures of income inequality have been addressed by economists and applied
researchers to answer a wide range of questions. Is there less inequality in the past
than the present year? Can we determine which of two countries have more unequal
distribution? Do taxes lead to greater inequality in the distribution of income or
wealth? In empirical work one would routinely apply various measures of inequality
to come up with arswers. For the economist however, it is more natural to begin
by considering the ordinal problem of obtaining a ranking of distributions. Herein
lies the concept of the social welfare function implicit in the ranking of the income
distributions. Development of principles which imply empirical criteria that can be
applied to evaluate and compare income distributions are addressed by a number
of writers such as, Atkinson {4], Dasgupta, et al. [21], Rothschild and Stiglitz [46],
Saposnik [48], Shorrocks [51], and othess.

We discuss briefly these normative criteria which we refer to in this paper as the

criteria for social ordering or simply social evaluation criteria.

3
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1.2.1 Social Evaluation Criteria

Consider n households, identical in all respects except for income. Let W(-) be the

social welfare function (SWF) defined as follows:

W = W(Zl,Zg,...Zn) = ZU(Z.‘), (14)
1=1

where z; is the income of individual i, U(-) is the individual utility function and is
increasing and concave. The above definition of SWF implies that W is increasing
in incomes, that is, an increase in income implies an increase in individual utilities.
As a consequence, a partial ordering implied by social welfare regardless of the form
of the individual utility functions is defined. This partial ordering is termed in the
economic literature as the Pareto criteria. Given any two income vectors z and y,

then for i = 1,...,n individuals,

fz; >y = W(z) > W(y). (1.5)

T is said to be Pareto superior to y if all members in = are better off and no one is
worse off compared to y and there is at least one person who is better off {mecaning,
2 Pareto improvement has taken place).

However, in real situations, some individuals will benefit and other« will lose as
a result of social changes and policy interventions. The effects of these changes on
social welfare become ambiguous if we adhere to the Pareto criteria. To reduce the
ambiguity calls for a relaxation of the the Pareto criteria. Two constraints are imposed

on the SWF.

1. W is symmetric in its argument i.e., W(z) = W(Ilz), for all permutation ma-

trices II.

2. W is Schur - concave in individual utilities;
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Symmetry (or the anonymity property), means that it is no longer necessary for
every individual to be better off under z than under y: if 2 or more individuals swap
incomes it makes no difference to social welfare. As a result, by ordering the elements
of vectors z and y from smallest to largest, y,., refers to the poorest ndividual and
Yn:n to the richest, without reference to the identity of who the poorest or the richest
individual might be.

The principle of transfers is widely accepted as the definition of greater equality,
i.e., the transfer of income from a richer to a poorer individual increases equality.
This is equivalent to assuming that the social welfare function is Schur-concave, that
is, if for any bistochastic matrix B, W(Bz) > W(z). In the income vector Bz, each
individual’s income is replaced by a convex combination of all incomes in z, that is, B
is a non-negative square matrix for which each row and column sums to unity. Hence,
Bz gives a specific form to the general notion that transfers which are progressive
reduce the dispersion of incomes by a form of averaging or convex combination of
incomes. As such, Schur-concavity reflects a preference for greater equality.

The first assumption of symmetry on W enables us to define the so-called rank

dominance criterion.

I 2R Y & Tin 2 ?,'.‘mVi- (1'6)

By imposing the assumptions on W, we present the welfare criteria which allow

us to draw valid welfare conclusions in empirical comparisons of incomne distributions

from sample data.
Theorem 1.1 (which is Theorem 1 in Dasgupta [21]) allows us to characterize
rank dominance in terms of the Lorenz curves. Thecrem 1.2 (which is Theorem 2

in Shorrocks [51]) characterizes rank dominance in terms of the generalized Lorenz

curves.

Theorem 1.1 Let z and y be the two income vectors with corresponding means = and
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i, respectively. Let L.(p)(Ly(p)), p € [0,1] represent the Lerenz curve corresponding
to the distribution z (resp y).

Ifz =y, then W(z) 2> W(y) V Schur-concave W(-),

<= L.(p) > L,(p) Vp.

That is, this is the situation where one distribution r can be shown to be at least
as desirable as another distribution y for any W (-). Such a situation arises when two
distributions have identical means and non-intersecting Lorenz curves.

The above social evaiuation criterion which uses the Lorenz curve as a measure
breaks down in situations where L (p) > L,(p) but Z < . This results in inconclusive
ordering among pairs of income distributions (see Shorrocks {51]). An alternativ:is to
use the scaled Lorenz curve as a measure to arrive at a social evaluation criterion and
invoking the principle of transfers. The latter is also referred to in the literature as
the generalized dominance criterion. It is assumed that the monetary denomination

used to measure income is uniform across distributions being compared.

Theorem 1.2 Let z and y be the two income vectors with corresponding means z
and y, respectively. Let GL.(p)(GLy(p)), p € [0,1] represent the generalized Lorenz

curve corresponding to the distribution z (resp y).

Ifz >y, then W(z)> Wl(y) V S-concave W(-),
<= GL:(p) 2 GL,(p) Vp.

This means that an unambiguous ranking is obtainable iff the generalized Lorenz
curves do not intersect and z has both a higher mean and a higher Lorenz curve, that
is, the GL curve of = must lie everywhere above the GL curve of y.

In terms of the empirical evaluation of income distributions, the welfare ordering
in Theorem 1.1 is equivalent to the Lorenz ordering and Theorem 1.2 is equivalent to

the generalized Lorenz ordering.
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The Lorenz order, <y, is defined as:

z<pyifforali0 <p<1,:.(p)>Ly(p), (1.7)

The generalized Lorenz order, <z is defined by:

z2¢Lyifz> 9y and GL.(p) = GLy(p), (1.8)

If we let the income vector = (y) correspond to a distribution function F (G,

resp.), then the rank dominance criterion can be written as:

F>2pG e FY(p) 2 Q7 (p)Vp € (0,1)

The rest of the mentioned orderings can thus be written in terms of the population
measures.

In retrospect, the partial ordering of income distributions according to the Lorenz
criterion is identical with the ordering implied by social welfare if the social welfare
function is defined as the sum of individual utility functions and by imposing the
anonymity and Schur-concavity assumptions on W(-). By scaling the Lorenz curve,
Shorrocks [51] arrived at another criterion to reduce the ambiguity in the ordering of
income distributions. In fact, Pyatt [44] commented that the ambiguity in ranking
could be removed entirely if we could define a unique measure of desirability for any
particular situation so that the ranking of alternative situations was always possible.
However, he also pointed out that it is hardly likely that such a measure could be
achieved. The reader is referred to the papers of Shorrocks [51], Pyatt [44] and Bishop,
et. al. [11].

1.2.2 Reliability and Economics

Reliability theory explores classes of life distributions corresponding to various notions

of aging. Each class of life distributions provides a realistic probabilistic description of

7
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a physical property occurring in the reliability context. This is important in modeling
real-life problems. For example, for life distributions which are IFR (Increasing Failure
Rate), failure rate increases with age (see Barlow and Proschan [7] and Hollander
and Proschan [30] for thorough discussions on classes of life distributions and their
properties).

Guess, Hollander and Proschan [29] proposed two new nonparametric classes of life
distributions for modeling aging based on the mean residual life (MRL) - the IDMRL
(‘increasing initially, then decreasing MRL’) and the dual DIMRL (‘initially adverse,
then beneficial’). MRL is defined as ‘given that an item is at age t, the expected
value of the random remaining life is called MRL at age t’. Tests {or these nonpara-
metric classes of life distributions are in the literature and are derived explicitly in
correspondcnce with the TTT-transform. The total time on test (TTT) - transform
has been advocated by Barlow and Campo [8] and others as a useful graphical device
to analyze life data. It has likewise been utilized by Klefsjo [35] and others to derive
tests of exponentiality versus nonparametric alternatives.

For a life distribution F with finite mean g, the TTT-transform T(p) of I is
defined as

F=1(p)
T(p) = /0 (1= F(s))ds, for0<p<1.

= [a-yarw (1.9)

The scaled TTT transform is

7.0) = 1 (1= ) dF () (1.10)

Chandra and Singpurwalla [13] were the first to point out the existence of a close
relationship between the TTT and the theoretical Lorenz curve, and in particular,

between the various indices associated with these transforms and the Gini index. For
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instance, the relationship between the scaled TTT and the Lorenz curve is noted as

follows.

L(p) = —,%(1 — P)F(p) + T.(p) (1.11)
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Chapter 2

On Testing for ‘Intersecting’ Lorenz Curves

2.1 Introduction

The ranking of income distributions has always been of great interest for rescarchers
and economists alike. Using the Lorenz curve as a descriptive device, one is able
to compare inequality in income or wealth distribution. Not only are we able to
determine dominance relationships in terms of the income criteria, we are also pro-
vided with a means by which to base policy reforms (e.g., tax reforms). Indeed, the
implications on the comparison of Lorenz curves are numerous and crucial to decision-
making. However, because the theoretical Lorenz curves are estimated based on the
samaple income data, variations in measurements are likely to occur. These varia-
tions may either be inherent or due to random variation. It is therefore relevant that
statistical tests be formulated to enable a policy maker to make statistically sound
conclusions.

The rank dominance criterion and the generalized dominance criterion are effective
welfare criteria for ranking income distributions. However, in a number of situations,
it is likely that a dominance relationship cannot be concluded. This is true when
the Lorenz curves intersect. For instance, in a study of inter-country comparisons,
Shorrocks [51] concluded in his Table 1 that Lorenz curves intersect in at least 108 of
the 190 pairwise comparisons between countries, hence barely 40 % of the inequality
comparisons generate unambiguous Lorenz ranking. When the generalized Lorenz
criterion was utilized, his Table 2 indicates that the generalized Lorenz curves intersect
in only 31 of the 190 potential pairwise comparisons. On the basis of this GL curve,

dominance is conclusive in 84% of the cases. These situations that result in ambiguous

10
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rankings are common. Although a substantial amount of economic literature on
the social evaluation criteria have been proposed to obtain comparisons that are
conclusive, the problem of ‘intersecting’ Lorenz curves remain. We have devised a
statistical procedure that can be used to test equality of the two income distributions
when it is suspected that their corresponding Lorenz curves intersect. Compared to
a descriptive numerical comparison, this statistical procedure is hoped to assist the
economist in arriving at a more reliable conclusion in situations when the sample
Lorenz curves intersect.

In this chapter, the focus is to develop asymptotically distribution-free test pro-
cedures against ‘crossing-over’ Lorenz curves.

We first consider the situation when a sample income distribution is being com-
pared with a known income distribution. We refer to this as the one-sainple case.
The case when the point of ‘intersection’ is known is presented in section 2.2.1. For
unknown ‘crossing-point’, the procedure is developed in section 2.2.2. We also con-
sider the situation when two sample income distributions are being compared. We

refer to this as the two-sample case.

2.2 One-Sample Case

Let F, be a completely specified distribution function. Let ﬁ'(), T and Ty.n,Tomy- s Tnin
be respectively, the empirical distribution function, the mean and the order statistics

of a random sample from F(-).

In the present section, we consider the problem of testing the null hypothesis

H,: F£F, (2.1)

against each of the alternatives

Hip : For a given (known) and fixed p € (0,1) where p is the ‘crossing point’,

11
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L(t) > L,(t) for 0<t<p and (2.2)

L(t) S L(t) for p<t<l

H; : (2.2) holds for p unknown, (2.3)

where L(-) and L,(-) are the Lorenz curves of F and F,, respectively. We notice that
F <y F, and F, <; F if and only if F{z) = F,(6z) for some 8 and for all real r,
i.e., F is equal to F, in the Lorenz sense. In this case, we say that I L F. Our test
statistics are motivated by Aly{1990) test statistics for JOM RL alternative.

In the above test procedures, we test the Lorenz equality of the two income distri-
butions when it is suspected that their Lorenz curves intersect. This means that we
cannot establish a dominance relationship. If the ‘crossing-point’ is known, rejection
of the equality of the two distributions mean that for the poorest p* per cent of the
population, the income distribution of the sample exhibits less inequality than the
theoretical model. When H, is rejected for the case when the ‘intersection point’
is not known, then p can be estimated. In such circumstances, concluding that the
sample income distribution intersects a known distribution and hence being able to
estimate the ‘crossing point’ p, a researcher is able to statistically conclude that the
degree of income inequality for the holders of the p** fraction of incomes is less than

that for the specified distribution model (refer to Figure 2.1).

2.2.1 Testing H, against H;, (Known Crossing Point p)

Let Fy and F, be two income distributions and L; and L, be their Lorenz curves,

respectively. Motivated by (2.3) of Aly (1990), we consider

AR Fip) = 2 [{La(t) = Lt} di — 2 [ {La(t) = La(0)}

A
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= 4[{L1(t) — Lo(t)} dt — 2_/01{1,1(0 — L,(t)} dt (2.4)

and note that if | £ F,, A(F), Fa;p) = 0 and if

|4

Ll(t) Z Lg(t) for 0 <t < P and (2u)

Ll(t) S Lz(l) for P < t < 1

L
holds and F # F, then A(Fy, F2;p) > 0.

Note that

/OpL(t)dt - /Op;ll-/otF"(s)dsdt
= [ = 9F(s)ds

1 1 -1 P 2y -1
= e enE© 0+ 5 [(0-srr), 2o

where J(A) is the indicator function of the event A.

By (2-4) and (2.6), we have

AFFip) = —{FFOIFTO 20+ (=57 dF(s))

_ﬂ% {sz{l(O)I(F{l(O) #0)+ /op(P =) dF?l(s)}

——{FO1F 0 £ 0+ [[(1 - R (o)}

= P OIE ) £ 0+ [[(1- 9P 6)}

= ,,Ll {(2p* — )YFTHO)I(F7H(0) # 0)}
+#1_1 {/0?2(1’— s dFY(s) __/01(1 —s)? dFl_l(S)}

= {(@" ~ VET O)I(F(0) # 0))

2
"2:1_2 {/OPQ(;) — $)2dFy(s) — /(’)1(1 ~ s)QdF;’(s)} :

13
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To conduct the one-sample test of (2.1) and (2.2) we propose a test statistic based

on ly:
D (F,Foip) = 6(F;p) — 6(Foip) = tiy, (2.7)
where
§(F;p) = i{@pz ~ DFHO)I(F7(0) # 0) + g(Fip)}, (2.8)
aFip) = 2 [ (= sPdFs) — [ (1= 9)dF(s), (2.9)
§(Fip) = 1:{(2112 — Dapn[{F710) # 0) + g(F; p)} (2.10)
A [np)-1 2 n—-1 "

g(F;py = 2 Z (P - —) (Zj41:m — Tjin) — z (1 — %) (Tj41m — T,m)(2.11)

=1
and I(A) is the indicator function of the event A.
In this section we derive the asymptotic distribution of 6(ﬁ'; ). The following

definition is needed in the statement of Theorem 2.1

Definition 2.1 The distribution function F(-) is said to salisfy the Csorgo-Révész
tail conditions on the support of F denoted by (tp,T¥) = {x : 0 < F(r) < 1},
—00 < tp < Tr < oo ( Csorgé-Révész [16] ) if

1. On (tp,TF), F is twice differentiable and f(-) = F'(-) > 0
2. For some ~yre(0,00), we have

sup  F(z)(1 = F(2)|f(2)l/ f*(=z) <

tp<z<Ty

To be able to state the next result, we define o?(F') as follows.

AF) = 55 [(p=y) ) [ op = 2)dF @)l )

p?

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



+2/0’ h(y)(1 —y) /Ov zh(z) . F~Y(z)dF~(y)
'—% /OP(P —z)(1—1z) /Oz vh(y)dF~'(y)dF~'(z)

—3‘ /OP(P —z)z /rl(l —y)h(y)dF~(y)dF~(z) (2.12)

with

2(1 — s ;
( 6)+9(F2p);
H "

2 ["(p — sdF=(s) - /01(1 — $)2dF-(s).

h(s) =

9(F;p)

Theorem 2.1 Assume that F(-) has mean p, satisfies the Csorgd- Révész tail con-
ditions on (tp,Tr) and if F71(0) # 0, we have fF~1(0) # 0. Assume, in addition,
that 0 < 0*(F) < oo, where 0*(F) is as in (2.12).

Then as n — oo,

ns {8(F;p) - 6(F;p)} B G(F;p), (2.13)

where

G(Fip) = %AQP—ﬂB@MF*@)

_/1 {2(1 -s) , g(F;p)}B(s)d,; -1(s), (2.14)
0 M H

and B(-) is a Brownian Bridge!.
Proof:
Let 6°(F;p) = ué(F;p), §(F;p) = 26(F;p) and note that

'The process {B(r),0 < z < 1} is said to be a Brownian Bridge if it is Gaussian with mean zero

and covariance function E[B{s)B(t)] = s At — st, where A means minimum(s,t).

15
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nd {8°(Fip) — 87 (1

We consider first the imiting distribution of the second term in (2.15)

n: {q(l m — gl 7’)}

By Theorem

= 211% {/(p(l’ — 8)2‘“:'-1(3)

5.1 of Aly(1990),

= (20" = Dk {F71(0) = FTN ()} I(F71(0) # 0)

+nt {g(Fip) — g(Fip)} . (2.15)

- [)V(p - :s‘)zdl""'(s)}

)
1 . 1 .
--n%{ (1 —.q)‘*(uv*»'(:;}--/ (1 —.q)hu«“'(.q)}
(43 0

" {_(/(I"';])) _ {/(l"§l')} by /U"(], — $)B(s)d "' (s) —

Next, we consider the limiting distribution of the first term in (2.15)

need to consider the case [77
1 Fi |
ni {I’ (1) -

Henee, as 1 — oo

nd {67 (5 p) ~ 87 (1

It therefore follows that

nd {o(Fip) - 817 p)} =

Reproduced with permission of the copyright owner

1N 0)} =

2/'(1 — $)B(s)d I (s) (2.16)

2.15). We only

1(0) # 0 in which we assmme that f1°71(0) # 0. Write

nt ST O)(F(0) = 171(0)
J(r=1(0))
n Bo) .
S i = (2.17)
";p)} Ly random variable of the RULS. of (2.16) (2.18)

L [e(Fip)  g(Fip)
n? -
l T i

N

n

- {90 p) — g(#ip)} - oir),

{J‘ — p}(2.19)

16
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Since u = f}(1 — s)dF~(s) and Z = f}(1 — s)dF~(s)

nb(z—p) = n%{/ol(l —-s)dﬁ'"(s)—/ol(l —s)dF"‘(s)}
=y " B(s)dF(s) (2.20)

Hence by (2.16),(2.19), (2.20) and Slutsky’s Theorem, we have as n — oo,

wt{shim - erim} & {4 [(p- 9B @) =2 [ (1= 5)B)dF(s)}
g(Fip) ! -1
- /0 B(s)dF~(s)
= -f-l-/op(p—s)B(s)dF"l(s)

_/01 {2(1; $) , g(f;p)}B(s)dF‘l(s) (2.21)

= G(F;p).

Note that for every fixed p € (0,1), G(F;p) is a N(0,0%(F)). This completes the

proof of Theorem 2.1.

By the result that A(F, F,) = 0 under H, of (2.1) and by Theorem 2.1, we have

as n — 0o,

1t
T, = ni—2_5 N(0,1). (2.22)

An asymptotic distribution-free procedure based on (2.22) for testing H, of (2.1)
against Hy, of (2.2) is to reject H, at asymptotic level a if Ty, > z1_,, where P(Z <
Z1-a) = 1 — a (ie, z, is the p* quantile of Z, 0 < p < 1). The consistency of
the proposed testing procedure follows from the result that if A(F,F,) > 0 then

T, = Ty, + Ryp, where Ry, = n%%(%’l = O(n%) and 17, £ O(1).

17
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2.2.2 Testing H, versus H, (Unknown Crossing Point p)

When the ‘crossing-point’ p is unknown, we propose the test statistic

ty = sup n?A(F,F,;p)= sup n t(8(F;p) — 8(Foip)) - (2.23)

0<p<1

Under H,, we have as n — oo,

ti B sup G(F.;p) =Tk, (2.24)

0<p<Ll

where G(F,; p) is as in (2.14). We reject H, of (2.1) in favor of H, of (2.3) if ¢, is
large.

The distribution function of Tr, depends on the parent distribution F,(-).
this reason, we need to obtain limiting critical values of ¢, for each F, of interest. For
any given F,, the limiting critical values of ¢, can be approximated. G(F,;p) of can

also be approximated for K large, that is,

. _4_ (/I\ —]/1\)

G(F,;1/K) K ; TFG/K)
LY 2(1—1/1x) g(Fo;z'/K)} Z -
={ i LEGRy 5P

where
{Z1,22,...,Zk1} ~ MVN(0,%),
o= (/K =K} RS 1— JK)?
g(Fo;l/I\) = Z-FZ,——O——W ; /1{), and (226)
18
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Yy = [E,’j] with

L = i/KQ1-j/K),i<j. (2.27)
Hence
Tr, 2 max G(Fyi/K) =Tk, (2.28)

¢ T 1<K -1

For any given distribution F,, we can obtain a table of approximate limiting
critical values. In particular for Fyo(z) = 1 — exp(—z), z > 0, the limiting critical
values of ¢; is obtained. The procedure employed is that for large K, say K = 200, we
compute ¥ of (2.27). We simulate N = 1000 random variables from the multivariate
normal distribution with mean 0 and variance-covariance ¥ of (2.27). We calculate
T(i), fori = 1,..., N of (2.28). The critical values are then obtained by ordering
the YA’,S—{;), t=1,...,N. Hence, for @ = 0.1,0.05 and 0.01, the limiting critical values
are 1.56,1.78, and 2.13.

Remarks:

1. When I, is rejected, we may estimate the ‘crossing-point’ p by p which satisfies

sup {8(F;p) — 6(Fuip)} = nt {8(F;p) — 6(FuiB)}

0<p<L1

2. Referring to Remark 5.1 of Aly [2): It is possible to adopt the proofs of
Chapter 6 of Csorgd, Csorgé & Horvath to directly prove Theorem 2.1 under the
weaker conditions EX? < oo and 0 < ¢%(F) < oo.

2.3 Two-Sample Case

Similar to the motivation for the one-sample case, in the test procedure for intersecting

Lorenz curves when two sample income distributions are being compared, we test

19
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the Lorenz equality of the two sample income vectors. Rejection of the equality
hypothesis implies that before the ‘point of intersection’, the Lorenz curve of the first
sample income distribution is above the Lorenz curve of the second sample income
distribution. After the ‘crossing-point’, the reverse is apparent. Hence, no dominance
relationship is established. If the ‘crossing point’ is given, then we may conclude
that for the poorest p'* per cent of the population, there is less inequality in incomes
for the first population than the second. For an economist, this type of answer is
significant when he is interested in finding out if a certain tax policy has reduced
income inequality for the poorest p** per cent by comparing the periods before and
after taxation.

Let z,,x3,...,Zn, and ¥1,¥2,. .., Yn, be independent random samples from Fy and
F,, respectively. Let I:"l(-), Zny and Tyingy .-+ Tnymm, (TESP. 1:"2(-), Unz, and Yingy - -y Ynging)
be respectively, the empirical distribution function, the mean and the order statistics
of the = (resp. y) sample.

We consider the problem of testing the null hypothesis

H,-F2F (2.29)

against the alternative

H, : For a given ‘crossing-point’ p € (0,1), (2.30)

Li(t) > Ly(t) for0 <t <pand

Li(t) < Ly(t) forp<t<l, (2.31)

where L;(-) and L,(-) are the Lorenz curves of F} and F3, respectively. By the
argument in the one-sample case, we propose to use A(Fy, Fy; p) of (2.7) as a measure

of the deviation from H, of (2.29) in favor of H; of (2.31).

20
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To conduct the two-sample test, we propose a test statistic based on

A(Fla Fz;P) = '5(F1;P) - 6(F2;p) = Iny oz (232)

where 6(Fy;p) (resp. 6(Fy;p)) is expressed in terms of n;, and the X’s (resp. the n,
and the Y’s ) similar to the expression of (2.10).
Let B,(-) and B;(-) be two independent Brownian bridges and define,

nz

G(F, Fyip) = (n1+n2)1/2 [ul_, {4/0p(P—s)Bx(s)dFl‘l(s)}

_/ou {2(1;; s) +g(i;(p)}31(s)df‘;l(s))]

(2 o - amenrs )

_[)1 {2(1 =), g(Fz;p)}Bg(s)dF;I(s))] (2.33)

H2 n?

Theorem 2.2 Assume that Fi(-) and F,(-) have meuns py and and p; and satisfy the
Csi)rg(’i- Révész tail conditions on their supports. Assume further that 0 < 0*(F)) <
00, 0 < 0?(F,;) < oo, where o?(F) is as defined in (2.12).

Then,

I( " )1/2 m/*{8(F1;p) - 6(Fi;p)}

ny + n2

1/2 .
- ( - ) ny? {6(Fyip) — 8(F2ip)} — G(Fr, Faip)] = 0

ny + ng

as min(ny,ny) — oo and (ny,ny) € Dy := {(n1,n2) : A < ;ﬁ]ﬂ <1 - A} for some
A ~(0,1/2]), where G(Fy, Fy; p) is defined in (2.33).
Proof:

Counsider

21
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(22 ) Ak, Fap) - AR, Fap)

n1 + ng
= (n:h::n)lﬂ {5(F1;P) - 5(F1;P)}
- ()" foten - scrum)
- (nx’j:nz)m ny/?{é(F;p) - 6(Fip)}
— (n1 7_:-1n2)1/2 nl/? {5(1}2;’,) - 5(1?2;,,)} (2.34)

where A(Fy, F2;p) and 6(F; p) are defined as in (2.7) and (2.8), respectively. From
(2.34), we can prove that

Hence,

1/2 . -
(___”‘”2 ) {A(F, FByp) = ARy, Fip)}y — GUF, Fz;P)l 50,

ny + ng

By remark 2 in Section 2.2.2, the Csorgo-Révész tail conditions of Theorem 2.2
can be replaced by the condition that FX? < oo and FY? < co.

The basis of the two-sample test is the following theorem which follows directly
from Theorem 2.2 by noting that G{F), F; p) is a mean zero normal random variable

with variance o2 | of (2.36). The complete proof is along the lines in Aly [2].

ni.n2

Theorem 2.3 Assume that EX? < o0, EY? < 00, 0 < 0%(F)) < o0 and 0 <

0?(F;) < co. Then,

5 N, 1) (2.35)

( mn; )1/2 (tnl,nz - A(F‘17F21p))
ny + n2 Un.l.ng

as min(ny, nz) — oo and (n1,nz) € Dy 1= {(n1,n2) : A £ =B4— < 1 — A} for some

= ni4ng
A ~ (0,1/2], where 0?%(-) is as in (2.12) and

22
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ol = 02(F1,F2) = {n162(F1) + nzﬂz(Fz)}/(nl + nz), (2.36)

ni,n2

Next, we define

Trime = Ohim(FiF2) = {mo®(F) 4 nao®(F)H/(ni+ma), (237

ny,n2

where

iy = B (-2 (- ) g
<

8 [np)-1 : I\ & ; i
-z 2 (-2 (-2 5 ()4 () peep-
j=1 =1
[np]-1 . L n—1 . .
SF (-2 - DE (-2 0
T i3 n n/ & n n

(2 - {20-2)+25)
sFin) = 23 (r-2) D=5 (1- 1) bu,,

where 7 is the mean of the sample, D;; = z41.n — j:n and a(ﬁ’g) 1s defined

similarly.

Corollary 2.1 Assume that H, of (2.29) holds true. Then, under the conditions of

Theorem 2.8 we have

1/2 ¢
Ty oms =( bl ) mnz BN, 1) (2.38)

n + na Un; N2

23
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As a consequence of (2.38) we propose to reject H, of (2.29) if Ty, n, > 21-a i€, 2p
is the p*» quantile of Z, 0 < p < 1. The consistency of the proposed testing procedure

follows from the result that if A(Fy, F2;p) > 0 then

Tnl nz — Tr:; M2 + Rﬂ; N2 (2.39)
where
Taimy = N(0,1)
and

R. _( nin2 )1/2 A(FL Fysp) p ( ning )'/2
M \ny + ng Orima ny + n; '

2.4 Simulations

2.4.1 One-Sample Case

We consider the problem of testing H, of (2.1) against H;, of (2.2). Let Ty, be as in
(2.22) and recall that we propose to reject fi, at approximate level o if 11, > z;_,.
A Monte Carlo simulation study was conducted to obtain a table of critical val-
ues of t;, for each value of p = 0.1,0.25,0.5,0.75, and 0.9. For each sample size
n = 50,100, the random sample z;,z,,...,z, was generated from the exponential
distribution with mean 1 and corresponding test statistic T3, of (2.22) was calcu-
lated. This procedure was repeated 1000 times. The resulting percentage points are
shown in Table(2.1) for n = 50 and in Table(2.2) for n = 100. The corresponding
standard normal values for « = 0.10,0.05 and 0.1 are 1.2816,1.6449, and 2.3263,

respectively.

24
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Table 2.1: Critical Values of Ty, for n = 50

Percentage | 0.10 0.05 0.01

p=0.1 1.45782 | 1.79441 | 2.32465
p=0.25 1.49497 | 1.92712 | 2.56977
p=0.5 1.58372 | 2.04085 | 2.83499
p=0.75 1.17229 | 1.54033 | 2.19678
p=0.90 1.17233 | 1.48873 | 2.29634

Table 2.2: Critical Values of T3, for n = 100

Percentage | 0.10 0.05 J_‘0.0l

p=0.1 1.42825 | 1.77570 -2.34559
p=0.25 1.47846 | 1.93438 | 2.47104
p=0.5 1.46975 | 1.85528 | 2.64145
p=0.75 1.17926 | 1.54951 | 2.02444
p=0.90 1.22171 | 1.69560 | 2.17465

2.4.2 Two-Sample Case

We consider the problem of testing H, of (2.29) against H; of (2.31). Let T, »,
be as in (2.38) and recall that we propose to reject H, at approximate level o if
Thymy > 21-a-

We consider the problem of testing H, vs. H;.

A Monte Carlo simulation study was conducted to obtain a table of empirical
critical values of p = 0.1,0.25,0.5,0.75, and 0.9. For each sample size n; and n; =

,¥n, Were both generated

50,100, the random samples z1,z,,...,z,, and y1,¥s,.-.

25
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Table 2.3: Critical Values of Ty, ., for n; = 50,i=1,2.

Percentage | 0.10 0.05 0.01

p=0.1 1.11774 | 1.42170 | 2.13231
p=0.25 1.16895 | 1.50346 | 2.03769
p=20.5 1.26100 | 1.61274 | 2.18157
p=0.75 1.03335 | 1.37699 | 2.00665
p = 0.90 1.13575 | 1.48087 | 2.11772

Table 2.4: Critical Values of Ty, », for n; = 100,i=1,2.

Percentage | 0.10 0.05 0.01
p=201 1.15492 | 1.50200 | 1.98969
p=0.25 1.21999 | 1.53851 | 2.35534
p=10.5 1.23468 | 1.70766 | 2.44096
p=0.75 1.17582 | 1.52253 | 2.23334
= 0.90 1.11538 | 1.44979 | 2.27025

from the exponential distribution with mean 1 and corresponding test statistic 75, 5,
was calculated. This procedure was repeated 1000 times. The resulting percentage

points are shown in Table (2.3) for n; = n; = 50 and in Table (2.4) for n; = ny = 100.
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Chapter 3

On Testing for Generalized Lorenz Ordering

3.1 Introduction

In Chapter 2, we developed statistical tests to determine whether the Lorenz curves
of two distributions ‘cross-over’ or not. We have pointed out in Chapter 1 that
‘crossing-over’ Lorenz curves is an empirical hindrance in the exercise of ranking
income distributions since it results in inconclusive ordering. Utilization of the GL
curves as tools for ranking provides a clearer ordering of alternatives. Hence, rank
dominance is characterized in terms of the generalized Lorenz curves (refer to Theorem
1.2). Shorrocks [51] concluded that by using the generalized Lorenz criterion, he was
sucessful in ranking 85% of the possible pairwise comparisons. Bishop, et.al. [11]
demonsirates that by applying statistical tests to obtain a dominance relationship
between two distributions, the statistical tests result in more unambiguous ranking
than mere numerical or descriptive comparison. For example, in his study to compare
the income distributions of the states in the U.S. among themselves and with the
income distribution of the U.S. as a whole, 32 states can be ranked according to the
generalized rank dominance criterion while {7 states ranked statistically.

In this thesis, we develop a distribution-free methodology to determine ordering
or dominance relationship between generalized Lorenz curves. This non-parametric
procedure follows from Aly [2]. One may also develop a non-parametric procedure
for ‘intersecting’ generalized Lorenz curves. The latter is not shown in this thesis but

can be derived following the methods in Chapter 2.
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3.2 One Sample Case

Let F, be a completely specified distribution function. Let F(), Tand Iy, Tom, ..., Tam
be respectively, the empirical distribution function, the mean and the order statistics
of a random sample from F'(-). It is assumed that incomes are measured in the same

monetary units. Furthermore, ygp > up,.

H,: FEF, (3.1)

against the alternative

GL
H, . F<¢gL F,and F # F, (3.2)

where </ is defined in (1.8).
Let L(p) be the Lorenz curve of income distribution F and let G'L(p) be the

Generalized Lorenz curve of F.

1 1
/ GL(p) = p| Lp) dp—/ F=Y(s)dsdp
0 0 0
1
= / F~'(s) dpds
0 s

1
- / (1 = s)F~(s)ds
0

(3.3)
Then by integration by parts,
Y 1 -1 1 ! 2 g1y .
/GL(p) = —FN0)I(F (0)¢())+—/(1ﬁ.«,-) dF=Y(s) (3.4)
0 2 2 Jo

Let F} and F, be two income distribution functions.

Define
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A(FLF) = 2 [{GLi(p) - GLy(p)} dp
= 2/01{/“14(?) — p2L2(p)}dp
= {FOIF©0) £ 0)+ [[(1 - sydFT ()} -
(P10 # 0+ [[(1 = 9)dF ()
= bgL(F1) — égL(F2), (3.5)
where
SeL(F) = F—I(O)I(F-‘(O);é0)+/ol(1—s)2dp-’(s). (3.6)

and I(A) is the indicator function of the event A. We note that

ARLFR) = 0if Fl F2 and
A(F],Fz) > 0if Fy # F, (37)

For this reason, we propose to use A(Fy, F2) as a measure of deviation: from H,

n favor of H,.

To conduct the one-sample test, we propose the test statistic

ta = A(FLF,) = 6c(F) — 66L(Fy) (3.8)

where g1 (-) is as defined in (3.6).

. n—1 : 2
6GL(F) = I)m](F—l(O) # 0) + z: (1 et "’) ($i+l:71 - Ii:n)

=1

T I (FHO) #0) +—E(n«—z (Lig1:n = Tim), (3.9)

1!

The basis of the one-sample test is the following theorem:
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Theorem 3.1 Assume that F(-) has finite variance, and that 0 < 0?(F) < oo, where

AF) = 8 [ (-2 [yl - ) dF- () dF'(2) (3.10)

Then as n — oo,

nt {61(F) - bL(F)} 2 N(0,0*(F)) (3.11)
Proof:
Let
nt {6gL(F) - bcL(F)} = nt{l -1}
where

i = ﬁ"l(O)I(ﬁ‘“(O)#O)+/Ol(l—s)2dﬁ‘“'(s)

I = F“‘(O)I(F"(O)#0)+/01(1—-s)2d17"(s)

nd{i -1} = nd{F1(0) = F71(0)} I(F7'(0) # 0) (3.12)

+n7 {g(F;p) — g(Fip)}, (3.13)

where g(F;p) = fo (1 — s)2dF~(s).

We consider first the limiting distribution of the second term in (3.13).

wi {o(Fip) —g(Fip)} = ni{ [((1=spdi=(s) = [[(1=sydF ()},
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By Theorem 5.1 of Aly (1990),

n¥ {g(ﬁ’; p) — g(F';p)} 2 2[)1(1 — 8)(=1)B(s)dF~(s)
- -2 (1= 9)B(s)dF-Y(s) =2,  (3.14)

Next, we consider the limiting distribution of the first term in (3.13). We only
need to consider the case F~1(0) # 0 in which we assume that fF~!(0) # 0. Write

ni f(F71(0))(F-1(0) — F~1(0))
f(F-1(0))

=0. (3.15)

nt {F71(0) — F7(0)}

D B(0)
f(F-1(0))

Hence, as n — oo,

ni{I -1} 5 random variable of the R.H.S. of (3.14)

It therefore follows that

nt {8cL(F;p) — Sar(Fip)} = n%{g(F;p)—g(Fip)} (3.16)

Hence by (3.14) and (3.16), we have as n — oo,

nd {Son(F;p) — bau(Fip)} B =2 [ (1 = $)B(s)dF~(s) = 2

where B(-) is a Brownian bridge and Z ~ N(0, 0%(F)). This completes the proof
of Theorem 3.1.

Theorem 3.2 Assume thet EX? < 00, and 0 < 0?(F) < co. Then
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1t = AEF) p
o (Fo)

T, =nt b L Z, under H, 3.17)
o(F,)

N(0,1),

where Z is a N(0,1) r.v. and o(F,) is as in (3.10)
The proof of Theorem 3.2 is along the lines of proof in Theorem 2.1 in Aly(1991).

As a consequence of (3.17), we propose to reject H, of (3.1), in favor of H, of
(3.2) if T,, > z;_4, where z, is the p* quantile of Z. The consistency of the proposed
testing procedure follows from the result that if A(F, F,) > 0 then

T, = Ty: + R,
where
T: £ o(1)
and
_ %{A(Fa Fo)} . i
R,=n —_G(Fa) = 0(n?)

We used a small scale Monte Carlo experiment to check the asymptotic normality
of T, of (3.18). We computed Tso and Tygo in the case F(z) = 1 —exp(—z), >0

and used 1000 replications.

3.3 Two-Sample Case

In the present section, we are interested in testing the null hypothesis
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Table 3.1: Critical Values for T,

Sample Size | 0.10 0.05 0.01

ny; = 50 1.1432 | 1.4692 | 2.2425
ny = 10f 1.1815 | 1.6414 | 2.4468

Ho A% F (3.18)

against the alternative

GL
Hl : F] SGL Fz and F1 # Fz (319)

By the argument following (3.19), we propose the use of A(Fy, F3) of (3.5) as a
measure of deviation from H, of (3.18) in favor of H; of (3.19).

To conduct the above-mentioned two-sample test, we propose the test statistic

tony ;g = D(F, Fy) = b6L(F1) — 6cL(F2), (3.20)

where écL(+) is as defined in (3.9).

The asymptotic distribution of 3,5, », and the basis of the two-sample test is given

in the following theorem the proof of which is shown in the appendix of Aly (1991).

Theorem 3.3 Assume that Fi(-) and F3(-) have finite variances, 0 < o?(F}) < oo
and 0 < 0%(F,) < co. Then

( nn; )%{t2;n,‘n2_A(FlaF2)} B)

ny + ny

N(0,1)

Ony.m2
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as min(n;,nz) — oo and (n1,n3) € Dy := {(n1,n2) : A £ =%— < 1 — A} for some

— ni1+n3
A~ {0,1/2], where A(F,, F3) is as (3.5) and

2 {n10*(Fy) + ny0?(F)}
an;.n =
: (ny + n2)
Next we define,
62 e = 02 (B Fy) = (mo?(F) + nad®(F2)}/ (m +ma),  (3.21)

where
2 F ! 2 [F A1 el .
S(F) = 8 [ (=27 [ 41— 9P W) () (3.22)

n;—1 27-1 -
= 83 (1- 1) 3 (1= i/m) @ovtm, = 2in) (@01 = T5nB-23)
1=2 nl

ny i=1
and o?(F3) is defined similarly.
From the definition of o2(F,) and ¢*(F;) and by the SLLN and Theorem 11 of
Sendler (1979), it follows that they are consistent estimators of 0?(Fy) and o?(F3) re-
spectively This result, and the fact that under H,, A(Fy, F,) = 0, imply the following

corollary.

Corollary 3.1 Assume H, holds true. Then under the conditions of Theorem 3.3,

we have

Tty ‘
T2;nl'n2 _ ( n)ny )2 1.12 2’ Z (324)

nl + n2 an; N2

where Z ~ N(0,1) random variable.
Above corollary suggest that an asymptotic distribution free test for testing f, of
(3.18) against H, of (3.19) is to reject H, if T2.n,.n, > Z1-4. The test based on T3, u,

1s consistent.
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Table 3.2: Critical Values for T3.n, n,

Sample Sizes | 0.10 0.05 0.01

ny,ng = 50 1.28649 | 1.54799 | 2.23698
ny,ny = 100 | 1.33959 | 1.67885 | 2.34783

We performed a Monte Carlo simulation study to check the asymptotic normality
of Ty, of (3.24) In this paper, we computed T3.5050 and 73100100 in the case
1(z) = F2(z) = 1 —exp(—z), z 2 0. The number of replications is 1000. The Monte

Carlo critical values are shown in Table 3.2.
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Chapter 4

An Alternative Index of Income Inequality

In this chapter, we consider the problem of obtaining an asymptotically distribution-
free estimation procedure for the point inequality measure K and its corresponding
global measure ¢X. These measures are derived from the ratio between population
and income quantiles of Zenga [54]. The asymptotic theory for the K empirical
concentration process is also developed and consequently, a variance estimator is
defined. Simulation studies are conducted under two leading income distribution
models, namely the Lognormal and Paretc Distributions to check, for finite sample

sizes, the asymptotic results and propertics of these estimators.

4.1 Introduction

In recent years, economic and statistical research on income distribution has led to
the development of several measures (curves) of income inequality or point concen-
tration measures (PCM). Nygard and Sandstrom [41] give an excellent accounting
of these concentration curves. Frosini (23] makes a thorough examination of in-
equality measures based on various types of comparisons between the distribution
function F' and the first moment distribution function @ or as a comparison between
their inverses. The first incomplete moment distribution function Q(z) is defined as
Q(z) = L 7 sf(s)ds.

As inequality increases the two curves tend to move apart although not always
(Frosini [23]); hence, some distance measures between the two curves can be used,
or at least be candidates for inequality measures. The first of such measures is the

Holme’s measure given by Q~1(0.5) — F~1(0.5). Modifications to the Holme’s measure
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were done by dividing by u or by @~?(0.5). Others have proposed similar measures of
specific fractiles. Frosini [23] gives a systematic analysis of deriving point inequality
measures. If the distance is computed as a function of a particular abscissa x, or of a
particular ordinate p, such distances are called point concentration measures. If the
distance is a function of two or more (typically all) points of the curve ¥ and @, this
is said to be a global measure or global index. This is computed as the average of
point measures and is the area under the point concentration measure.

If we let QF~'(p) = L(p), examples of measures derived from differences or ratios

between ordinates are A(p) = p — L(p), B(p) = FQ~!(p) — p, etc. The measures
C(z) = z— F!'Q(z)],a <z < band D(p) = Q~(p) — F~(p) are based on compar-
isons between the abscissas. Point measures allow comparisons between distributions,
not within the same distributions. The following interpretations of the ordinates and

abscissas are useful in determining the real significance that the above inequality

measures possess.

1. p refers to the percentage of poorest individuals;
2. F~(p) is the highest income of the share p of (poorer) individuals;

3. Q@7 !(p) is the highest income of the poorer individuals that possess together the

share p of the income;

4. L(p) is the percentage of total income possessed by the p** % poorest of indi-

viduals;
5. F(z) is the percentage of individuals with income less than or equal to x;
6. Q(x) refers to the percentage of total income possessed by the same individuals;

7. FQ~'(p) is the percentage of (poorer) individuals that possess the fixed share

of income;
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8. Q' F(z) refers to the highest income among the share of (poorer) individuals

who possess the income proportion F(x).

In order for a PCM to be in the roster of valid inequality measures, it must satisfy
the following characteristics: (i) The PCM must take values in the interval [0, 1]; (ii)
It must not have a forced behavior; (iii) As the income distribution X tends to the
null concentration (i.e., when all individuals receive the same income or L(p) = p),
the PCM must tend to zero and as X tends to the maximum concentration (i.e., when
one person receives all the income and others receive none or L(p) =0 for0 < p <1
and L(p) = 1 for p = 1), the PCM must tend to one; and (iv) The PCM allow's partial
ordering. While the ordinate of the Lorenz Curve, L(-), has been the most widely
used PCM, by construction, it has a forced or predetermined behavior in the sense
that L(0) =0 and L(1) = 1 and is always an increasing convex function.

Zenga [54], introduced the Z-curve which is derived based on the analysis outlined
above but normalized in the sense that the difference D(p) is divided by Q= '(p). Itisa
comparison of the difference of the highest income of the share p of (poorer) individual
and the highest income among the poorer individuals that possess together the share
p of the total income, relative to the highest income of the poorer individuals that
possess the fixed share of total income. [t satisfies the properties of a good PCM
particularly that of a free behavior. Not having a forced behavior property means
that when p varies from 0 to 1 or when z varies from a to b, the PCM does not
obey a pre-assigned pattern (say, a curve being convex). Its global index ¢#, which
is the average of point measures Z(p), can be visualized as the area under the Z-
curve. Moreover, when z tends to the null concentration, Z(p) tends to one and
when z tends to the maximum concentration, Z(p) tends to one. This implies that
the Z(p) = 0 is the complete-equality line and the deviation from the Z-curve to
this line is the point concentration. The larger the deviation, the higher the point
concentration. Dancelli [20], Latorre [41], Salvaterra [47], Pollastri [43], and Dagum

{17] have critically surveyed the advantages and disadvantages of the Z measure.
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These theoretical and empirical studies have shown the superiority of the Z-curve
relative to other measures. However, since this is a relatively new area of research
and mainly due to the complexity of the expression for Z, little has been done to
develop the corresponding tools for formal statistical inference. In particular, only
the parametric approach of estimation has been extensively studied (see Latorre [38]).

In this paper, our focus is on developing nonparametric asymptotically distribution-
free methods for the K-PCM. This inequality measure can be derived from the com-
parison of the abscissa (particularly C(z)) or from the Z-measure. The (1-K(p))
curve is interpreted as the measure of highest income among the share p of (poorer)
individuals who possess a percentage of total income em relative to the average in-
come of the same individuals. The global index of the K'-curve is also the average of

the point measures and is the area under the K-curve.

In Section 2, expressions for the K-PCM and the corresponding global index ¢
are shown. A comparison is performed against the Lorenz and Z-PCM in terms
of their properties. Applications of these measures to classical distribution models
and to empirical data of USA and ITALY are explored as well. The development
of the statistical theories are contained in Section 3, particularly the nonparametric
approach for estimating £. Further, asymptotic theory of our proposed estimator of
£ is developed leading to inferences regarding the sampling variability of the income
distribution. The variance is estimated nonparametrically. Unbiasedness, consistency

and coverage probability are verified through a simulation study in Section 4.
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4.2 The K-PCM

4.2.1 The K-PCM as derived from Z-PCM

Let the income X of a unit be a nonnegative continuous random variable with density
function f(x), cumulative distribution function (cdf) F(z) and finite mean E[X] = pu.
Let Q(z) be the cdf of the first incomplete moment, that is, Q(z) = %f: sf(s)ds.
Note that both F(-) and Q(-) are invertible, that is, both are stricly increasing and
positive on their supports. Zenga [54] defines the Z-PCM or Z-Curve as:

~(p) = F(p)
Q'(p)
F~(p)
Q-'(p)’

2(p) =

1- O<p<l, {1.1)

where

F~Y(p) = inf{z : F(z) >} is the population quantile,

Q' (p) = inf{z : Q(z) >} is the income quantile.

The corresponding global measure of Z-PCM, denoted by £, is the area under

the concentration curve Z, that is,

£ = /' Z(p)dp

1F- l(p)
- (4.2
o Q ‘(P )
The Lorenz Curve of F is defined as

1 ¢r
L = — [ F7(t)dt. 4.3
() = = [ F7 (1.3)
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In empirical work, the Lorenz curve maps the cumulative distribution of house-
holds arranged by increasing the size of their incomes (ie p=F(x)) into the cumulative
distribution of their corresponding aggregate income.

We note that the Lorenz Curve L(-) can be written as L(y) = Q o F~(y) and
hence L='(p) = FQ ' (p) and Q" '(p) = F~'L~'(p). This leads to an alternative
expression for £ as explained below.

By (4.2), we have

& = [ 2()p

_ _/’F ?) 4,
"(p)

_ 1(p)
= / Foor P (4.4)

Let L='(p) = y aud note that dp = L'(y)dy = %F"’(y)dy. Substituting into (4.4),

we get

e - - /1 Fo1L(y) F ' (y)

1 1
= ,dy=1_;/0 F1L(y)dy, (4.5)

Note that by (4.5), €2 = J! K(p)dp, where

K(p)=1- lF“L(p), 0<p<l (4.6)
7

This suggests that the new measure!(curve) K (-) defined by (4.6) and denoted by K-
PCM is a point concentration measure. Note that £Z is the area under the K-Curve
(and also under the Z-Curve). We will use the notation ¢{(= £2) when we use the

representation in terms of the K'-Curve.

'Frossini has examined several point measures based on the comparison between the distribution
function F and the 1st moment incomplete distribution function Q. The KX PCM can also be derived

using such method of comparison.
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Remarks:

From (4.2), we can express £ as

— 1 ! -1
£ = 1“,1/0 F'L(p)dp

= %{ﬂ—/olF"‘L(p)dp}
= {[ w4
- /011\"(-)(11/,

where

1
K'() = = {F7'(p)- F'L(p)},  Vpe(o,1)
which suggests the additional measure K'*(-) as a point concentration measure.
4.3 Comparison between the K and Z Curves

In this section, we establish the properties of the K-Curve and compare it with

Zenga’s Z-Curve.

Properties of the K-PCM

1. K(p) takes values in

te Ty
[1 - —f—’ l B —_I_] ’
/t Iz

where tp = F710) and Tr = F~'(1-).

b

K (p) has a pre-established behavior since the curve is a decreasing function of

(K@) - =F21 ) 1
PUTL™ = 7 " WiFTLipp

< 0). The curve can be either convex or concave.

w

. The null and maximum concentration results apply for p € (0,1).
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Functional Forms to Fit Income Distributions

Behavior of L and Z under the Uniform, Lognormal and Pareto Models have been

analyzed in Zenga [54]. Here we preser* ‘he graphs of these curves together with

those from the K-PCM.

Behavior for Uniform Distribution

X ~ Uniform{u(l — a), u(1 + a)); E(X) = y;

2ua

55 #Ml—a)<z<pu(l+a),p>00<a<l
f(z) _
0 otherwise

0 z < pu(l —a)
F(r)= I—_—;f‘]—o_—ﬂ w(l—a)<z<u(l+a)
1 r>u(l+a)

F7Yp) = p{2ep+(1—-a)}

= 2ua

Q7' (p) = ytap+(1-a)?
1. L(p) = :7 g F Y (t)dt = ap® + (1 —a)p
A _ F"lgp! — | _ 2ap+(l1—a
2. Zip) =1 o= = 1 7——‘-—#40;&“_0)2
3. W(p)=1- K0 =) (242p2 4 2a(1 — a)p + (1 — a)}
4. K*(p) = J{F ' (p) = F'L(p)} = {2ap + (1 — a)}-{2a’p* + 2a(1 — a)p + (1 — a)}

.Figure 4.1 (a),(b).(c) and (d) are the L, Z, K, and K* curves of the uniform dis-

tribution with a = 0.5 and a = 2.5.

Behavior for Lognormal
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X ~» Lognormal with E(X) = exp(y + }6?%),
Var(X) = exp(2y + 262) — exp(2y + 6%), § > 0.
sz-'z 2
f(.’l?) wl;;%exp(-i [l & ] ) $>0;'7|<+w30<6<m

0 otherwise

F(z) = q»(l"—g%ll)

0(z) =Q{E£%%;i)
F~Y(p) = exp (7 + 5@_1(17))
i[j;l_(_])_) = dexp (7 + 6‘1)_!(17)) do~! (P)

dp
Q' p) = exp(v+6+697(p))

where ¢~1(p) is the inverse of the standard normal distribution function.

—

 Lp) = 9 [07 (p) - 6]
2. Z(p) =1 - exp(—=6?%)

3. K(p)=1—exp (5 o='(p) - é';)

cxp(ﬁ ¢! (p))-—cxp(& @1 (p)—62)
(36

4. K*(p) =

Note: Figures 4.2 (a), (b), (c) and (d) are the L, Z, K and K* - Curves of the
Lognormal distribution with 4 = 2.8 and é = 0.35, 1.5.

Behavior for Pareto Type I

X ~ Pareto with E(X) = 222 6> 1 and E(X?) = %22, 6> 2

fz) = 62°z7%, 2> z,>0,
N
Fz) = 1-2%27% = —(——a)
T
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o = 1-(2)7

o

F'p) = zo(l—p)%

dF-l'(p) _ z. ~(1/6+1)
Q7' (p) = z(l—p) @D

CLp) =1-(1-pF"

[y

2. Z(p) = 1 — (1 - p)7o=m

(1-p)((1=0)/6%)

w

e =0 - -]

-

Note: Figures 4.3 (a), (b), (c), and (d) are the L, Z, K and K* - Curves of the
Pareto distribution with § = 1.2 and 2.9, 4.5.

App:ication to Empirical Income Distribution

Salvaterra [47] has studied the behavior of the L and Z concentration curves in
grouped data taken from the 1986 Survey of the Bank of Italy on income distribution
of Italian families. Pollastri [43] has likewise determined the behavior for both L and Z
for the data taken from the 1935-36 and 1979-80 Survey on the U.S.A. Personal Income
Distribution. In Figures 4.4 (a), (b) and (c) and Figure 4.5 (a)-(f), we reproduce their
results together with the behavior for the K Curve.

Inspection of the curves indicates that the curve Z(p) seems more flexible in
describing inequality and is mcre sensitive to variations in the empirical distributions.
In particular, when the Z-curves in Figures 4.3.5 (c¢) and (d) are superimposed, we
notice that in the USA during the two periods studied, the point concentration has
increased for the richest and has decreased for the poorest. We are unable to arrive

at a similar conclusion when the Lorenz curves are being compared.
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4.4 On Theoretical Results

In a descriptive sense, the Z(p) Curve is shown to be more superior than the L(p),
K(p) or K*(p) Curves. This is evident in its properties, through its behavior for
various classical income distribution models and because of its flexibility and sen-
sitivity to variations of income inequality in the empirical distributions. Statistical
inference based on the Z Curve is hindered by its expression as a ratio. However, for
the global index £, we are able to obtain a nonparametric estimate of £ and develop
its properties.

The first subsection gives a derivation of the nonparametric estimator {; for the
global index ¢. Next in section 4.4.2, a Central Limit Theorem for £, is established. A
nonparametric estimate of the variance of {ln is given in section 4.4.3 Furthermore, we
present another method of estimating o2(,,) through the quantile density estimation
approach. The form ¢(:) = TF_lT(—)' appears in the expression of 0%(£,), hence the
problem of estirnating ¢ in terms of either a histogram-type or kernel-type estimator
is investigated.

The last subsection of this section provides expressions for the exact asymptotic

variance under the Pareto and Lognormal distributions.

4.4.1 A Nonparametric Estimator of ¢

Let F, be the empirical distribution function (EDF) based on a random sample

Iy, Ta,...,T, from F, that is,

Tin > T

Fu(r) = Thin T < Thprm, k=1...n (4.7)

—_—a O

Tnn S T,
where 2y.,, Tain, ..., Znm are the order statistics of the X sample.
Let F7Y(y) = inf{r : F.(z) > y} be the corresponding empirical quantile function.

Note that we will use the following (asymptotically equivalent) definition of F1(.),
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o Tyn y= 0
F Y (y) = (4.8)
z<ny>:n 0 < y S lv

where < z > is the smallest integer > x.

Let L,(-) be the empirical counterpart of L(-). It can be shown that Ln(0) = 0,

L,(1)=1 and
. 1 [ﬂy] 1
= — i —_— - : B
L.(y) — ;z"" + ni(ny [ny]) Tpay+1n 0 <y <1, (4.9)

where $9_, = 0 and [t] is the greatest integer < {.
Note that

1 [ny] . [ny)]+1
- n < n - n 4.10
nigz._lz(y)<n$§$ (4.10)

For this reason, the empirical Lorenz curve has been defined in the literature by
any of the three (asymptotically) equivalent expressions appearing in (4.10). In this

paper, we define the empirical Lorenz curve, L, (), as

The left continuous inverse, L;!(-), of Ln(-), is known in the literature as the

empirical concentration curve. It can be shown that L7'(0) = 0 and

L7Y(p) = inf{y: La(y) > p}
= {0 p=0 (1.12)

k1 k-1 1k
n ng 2ei=1 Tim S P < ni Zi:] Zi:n

This implies that
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4
I . . (4.13)
%E.’:]l Tin <] < %E.’:l Ti:n

1) = {

Now, recall that the concentration index £ is defined in (4.5), as

I O

1 ra
£=1 ,,/OF L(y)dy

Our proposed nonparametric estimate of £ is given by

bo=1-1 [ F7 L)y (4.14)

s

By (4.8), (4.11), (4.14) we obtain

g"h
i
|
K=
Mz
=~
f
>3
N
Sll""
™
8
3
N—

J=0"1ln'"n =1
= 1= L_"z‘:l Fn—l (_l___z}:zim) _ —l_—Fn-l(O)
nr =1 nr o nr
1 n-1
= 1~ ;E{-T];n'*'jzzlx( :____lznn/i):n}. (415)

Remark:

If we estimate L,(-) in (4.14) by the third expression of (4.10), we arrive at

s 1 n—1
fn = ] - E z:l T [JFL :‘:n] . + Tn:n (416)
1= 2 n

as an alternative estimator of £. We have noticed that f; overestimates £.

4.4.2 Asymptotic Distribution of f,.
In this section we derive the asymptotic distribution of &,.
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Theorem 4.1 Assume that F(-) satisfies the Csorg- Révész tail conditions on (5, T})
(¢f. Definition 2.1) and that 0 < 0}(F) < co, where

AF) = ofé) =2 [ {(1-h) [ zh@dF @} aF ) @)
h(1) = F_lg_l(t) + 9:2) - % - (i;_&); (4.18)
o(t) = /L’(y)-f—lf—lmw '(t) and (4.19)

ol = /;F—_T%l—_mdF“‘(t). (1.20)

Then, as n — oo,
ni {€ — €} -2 N (0,03(F)).

Proof:
Recall that

£ = 1—— 1——/F’L(J ) dy
and
1
e = 1-L o2y ey
7 i Jo
Hence,
- I I,
{n'—é - ;——;
1 I .
- t-n-Le-w
I 7%
= o086, (1.21)
T T
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Define Un(-) = FF(-) and un(t) = n¥ (Un(t) —1),0< t < 1.

Note that
nd(l,—1) = n%/u1 {F;‘Ln(y) - F”’L(y)} dy
= nz /()1 {[F,:"L,.(y) — F'La(y)] + [F ' La(y) — F7'L(y)] }dy
= Ji(y) + J2(y),
where
M) = b [{E L) - FLa@)} dy
and

L) = b [{FLay) - FIL@)} dy

By a two term Taylor series expansion,

_ 1 B 1 _ ln% 1 _ 2 f'F(ey)
Jay) = n -/u {La(y) — L(y)} fF-1L(y) dy 2 /o {Ln(y) - L)} fRF-1L(e,) %
1! 1
= "’/0 {L.(y) — L(y)} mdy — Ry, (4.22)
where
—ln% 1 _ 2 f'F_l(fy)
R') - 2 [) {Ln(y) L(y)} fQF_lL(Ey)
and
min(L(y), L,(y)) < ¢, < maz(L(y), L.(y)).
Also,
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hw) = nt [ {F7Lay) = P La(y)} dy

- / {FTH FF La(y)) = F'La(y)} dy

(1.23)
By a two term Taylor series expansion,
— ni 1 —
h(y) = / {FFP Lat) = L)} =iy 4
L "F=YLa(6,)
—_—n2 7 L L ? i________‘_ 1
3t [ VL) = L)Y Ty
! un(Ln(y)) .
0 fF.,an(y) dy - I{Iv (121)
where
1 2 P ()
Rl e 2 / {U L (J L"(y)} f21'1_l11n(6y) (ly
and

min(UnLa(y), Ln(y)) < 8 < maz(UnLu(y), Lu(y)).

By Definition 2.1 ii, a result of Goldie [28] and arguments similar to those used in
Csorgé-Révész [16], we can prove that as n — oo, Iy 2,0 and i, -5 0.

Hence in terms of I,,(y) = n? {L,.(y) — L(y)} we have

i1~

‘fl%(ln-—]) / i 1/) g+ Vo (La(y)) dy + o1)

‘L(y o fETLa(y)
Al,n -+ ’\2,71 + 0(1) (425)

I

Csorgo ct. al. [15] proved that

L(y) =2 Aly)
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and
un(y) = B(y),
where B(-) is a Brownian bridge ? and
1 v _ 1 -1
A =5 {[" Bar- 0 - 1) [ B}

Consequently, as n — oo,

p ' Aly)
Al,'n — o m d (426)
and
p, ' B(L()) , .
/\2,71 > fF ]L( ) (427)

By (4.25), (4.26) and (4.27), we have

Lo oo, [P M) ! B(L(y))
nz(l, —1T) o TF1L() dy + b TF1L(y) dy (4.28)

as n — o0,

By (4.21), (4.28) and Slutsky’s Theorem, we have as n — oo

YOO ) RN N I Wy P
tn =8 fF"L(u dy+#2/0 fF“L(y)/o B(t)dF~'(t)dy

/‘ B(t)dF-1(2)

T fF ‘ka
(1- 5) 14y —
- /B(t)dF (t)= S (4.29)

?The process {B(r),0 < r < 1} is said to be a Brownian Bridge if it is Gaussian with mean zero

and covariance function E[B(s)B(t)] = s At ~ st, where A means minimum(s,t).
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Note that in (4.29), we use the result that
1
n(z - u) 2 / B(t)dF~'(t), as n — oo.
0

By letting t = L(y) and use the fact the L'(y) = %F"(y) and dF~(t) = —ﬁ.i_',m,

we can show that

_ ! 1 g(t)_ﬂ_(l—f) -1 a4
S = /O{F_IL_,U)+ e R }B(t)dF (t) (4.30)

and h(t), g(t) andcl are as in (4.18),(4.19), (4.20), respectively.

Note that S is a mean zero normal random variable with variance o(F’) of (4.17).

This completes the proof of Theorem 4.1.
4.4.3 Nonparametric Estimator for o}(F)

The Direct Nonparametric Variance Estimator 5%(£,)

Let F,(-, and L,(-) be the empirical distribution function and the empirical Lorenz
function of the given sample and T be the sample mean. The direct nonparametric
estimator of 0Z(F') is obtained by replacing F=!(-) by F7'(-) in (4.17). The resulting

estimator is given by

(4.31)

”E\':’
3
I
Q»

*(6n)
=2 E (-2 1 () £ 2 () ) nr =,

—

i= 1=1

where

hn(ﬁ) I +gn(zf)__«:_ll_(1—»5,,)

W) T ELE T E # s
n-1 2z
cl, = = —_—— (1:‘+1:n - I':ﬂ)
& FoL(E) T
k n—1 1
n j:[nLn(ﬁ)] Fn L" (n)
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and

L;! (i) JF7ULT! (f) and L, (f)
n n n

are as defined in (4.13), (4.8) and (4.11), respectively.

Nonparametric Variance Estimator via Quantile Density Estimation Ap-
proach

In this section, we derive another expression for the variance in terms of the quantile
density function where ¢(-) = j_F_ll_() From here on, we will refer to this alternative

expression as the quantile density approach.

Let S be as in (4.29), it can be shown that

S = S]+S2“S3a

_ _1_ ! B(y) -1
TSk W

L[ B)e(w) dF(y),

12 Jo

S = = {3 +u(1-0} [ B@)dF (),

,
W
i

/fF‘L /fF‘()dLl()

/ fFLEyL / fﬁ LT

Hence,
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O’g(F) = Var(S) = E[S]2 =0y +0;+4+03+ 20’]2 - 2013 - 2023, where oy = 1':[3.]2
and o;; = E[S; 5] are given by

2 (1~
o = ), Tk @)

o= = [[0-waw) [ ez dF @) dF )
7 = =+ u(-OF [ v [ -0 dF @) dF ),

TAyY — -1 -1
o = //{ A2 s a7 @) ),
1 I -1 =1
= = [ swa- /fF iy 4L @AFT )
+—/ votw) [ Fp AL @A ),
1 (1-1z) -1 -1
= = e )/ y9(y) dF~ (y)dL™ (=)

;‘5/0 m /:(1 ~y)g(y)dF ™ (y)dL ™' (z),

o = A+ all —s)}/l/l {%%} 4P~ (y)dL ™ (=),
- ;1—{,\+11(1 o}/ e ,() "y dF(y)dL ()
+—{/\+ﬂ A T /(l—y)dF-'(y)(ur'(z),

and

1 v [ D= aNdF Nz
o = O +u1 =0} [ [z ny =2y} g(@)ab " ()aF " (),
1 : ! z =1 .
= 0+ -0) [ -2 [[ydFy)dr )
1 1 1 - (s
t o D=0} [ gl@) [[(1-9)dF () dF7 o).
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Let ¢(-) be an appropriate estimator fcr ¢(-). We propose to estimate o; and o;;

by &; . and &,;, which are given below.

b = e (-, i)f;(n)fz:f Y;d(¥;),
s EE DR OSQn

Fan = — {/\ +z(1 — &) } Z (i/n) (Z(l —7/n) (Zj41n zj:n)) (Zit1:n = Tiwn),
[nY\]

O1zn = a3 Z(l—y)Q(Y)Z(J/n )§(5/n) (Tjs1in — Tjin)

+ ¥ vam 'i (1= 3/m) 3G /n) (zj41m = Tim),

i=1 i=[rYi]+1

. 1 . ‘ . n—1 [nYi]
O13n = ;':23 {/\n + j(l - Eﬂ)} Z (1 - K)é(x) Z(J/n) (xj+l:n - -Tj:n)

#a o+ 20-E}E VG005 (1= S/) e = 2

j=[nYi)+1

&230 = ;{{i l "'fn }Z(l —Z/n)g("/n)(xﬂ-ln IIH)Z(]/n)(xJ+1ﬂ-IJn}

21 {70 = 0} 5 6/ 8/m) v = 210) 00 = /) (31020 = 730,

i=v

where

s b Ly,
}: - L"(n).—nigz”m

i = [AARE =1 S i),

" i=nLyl(j/n)
. J—l
1;,',(j/71) = Z(k/n)gn(k/n)(xk-f-l:n"'l'k:n),
k=1

A, = %i (Y)Y
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The problem of estimating the quantile density ¢(-) = 7727y is explored through
a ‘histogram-type’ estimator or through a ‘kernel-type’ estimator.

The histogram-type estimator suggested by Siddiqui [53] and investigated by Block
and Gastwirth [12] and consequently used and modified by Falk [22] is of the form:

hp = @ TD-FG-b)

_ {$<np+1xb>:n - $<"P-'\b>:“}, (4.32)

2b

where b is the bin width, bandwidth or smoothing parameter and satisfies the condi-

tions that b = 8(n) > 0, b — 0 and nb — oo as n — oo. The optimal value of b is
2(p) 17 m &2
b= cn? where ¢ = [2—27%,—(%)-);]2, q'(p) =. —d‘f},ﬂ]
Kernel-type estimators are proposed by various authors (see Jones [31], Babu and
Rao [6], Babu [5], Falk [22], and Muller {40]). We draw on the work of Jones such

that the Kernel estimmator is of the form:

- 1 u— !
j2(u) = Tim — Ti—1m) — k | ——2—
Ga(u) g( ) 3 ( : )

1 u-—-1 1 u
_zn:n3k< b ) +11:n‘5k (-b-) )

where k(-) is a symmetric probability density function say,

0 u<—1
k(u)=¢ 1—|u] ~l<u<]l (4.33)
0 u>1

We take b = b(n) = (—l—’(—))*— which satisfies the condition that &(n) — ¢ and
nlog(n

nb(n) — ocoasn — oo.

4.4.4 Exact Variance Results
Exact Variance Under the Lognormal Distribution
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Recall (4.17), (4.18), (4.19) and (4.20) for 0(F), h(t), g(t), and cl, respectively.

Under the Lognormal, the following expressions are derived:

po= exp(7+%6’)
L(t) = &(®7(t) - 6)
FTULTYt) = exp(v+ 6 +607'(2))
F7(t) = exp(y+607'(2))
dF7'(t) = bexp (v +607'(t)) dd7(2).

It can be shown that:

h(y) = 1 B é B ®-1L(t) B exp(—6?)
YT exp(y + 8+ 8971(y))  exp(8?)  exp(y + 18%)  exp(y + 36%)
Exact Variance under the Pareto

Recall the formulas under (4.17), (4.18), (4.19) and (4.20) for o}(F’), h(t), g(2),

and cl, respectively.

Under the Pareto distribution on (1, 00), the following expressions are derived:

8
R

L(t) = 1-(1-1)%
FUL7Nt) = (1—t)75a
FNt) = (1—1)7%

dfﬁ—l(t) = %(1 - t)—(1/0+1)
1
¢ =3 +6(6-1)

g(t) = %(_1_;(;_)“3; cl = %8(2, a0); and
1 (-1 B(2,a0) (1-¢)
h(t) 1= a0 a8 T
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where a0 = ;&= — };al = § — ;02 = };a3 = ;a4 = ;15; B(2,a0) = Beta(2,40)
Plug in A(t) and dF~!(1) into (4.17) and evaluate the integral in terms of the
parameter 0. The derived variance is called the ezact variance under the Pareto

Model in this paper.

4.5 Simulations

Monte Carlo simulation studies are conducted in order to establish the unbiasedness
and consistency properties of €. and &Z(En) as estimators of ¢ and of a’(f,,), respec-
tively. Two leading models of income distributions are assumed under study, namely,
the Lognormal and Pareto.

Latorre [38] proposed parametric estimates of £ under several models of income
distributions. Part of his results are reported in Table (4.1) and Table (4.2) together
with the results of this research.

The simulation study are shown in Section 4.5.1 for the direct approach while
results for the quantile density estimation approach in Section 4.4. The MTS FOR-
TRAN language together with the subroutines in IMSL(1592) are used in the com-
puter simulation programs (refer to the appendix for the computer programs). For
sample size less than or equal to 100, 1000 generations are taken. For sample size
1000, only 300 repetitions are done. Analysis and interpretation of results are covered

in Section 4.3.

4.5.1 Monte Carlo Simulation - Direct Approach

Notations

i. EMC(.{':") = Monte Carlo estimate of {:,;

2. Varpe(€,) = Monte Carlo variance estimate of &,;

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. Enmc (a’t’(f")) = Monte Carlo estimate of 02,4 (én);
4. Varyc (&2(fn)) = Monte Carlo variance estimate of 2(,);
5. af,,,c,(f,.) = exact variance under the population by evaluating (4.17);

6. aga,({z) = ‘parametric’ variance , ie, variance obtained by the linearization

method;

7. &z(f") = nonparametric asymptotic variance estimator;
Under the Lognormal Model
X ~» lognormal with v+ = 2.8 and é = 0.35

o < [T -

0 otherwise

F(z) = q)(l—%%—")

£ = 1—exp(—6%) =0.1153;

nVarMc(&) ~ 0.03, n is the number of observations. (4.34)

The value for the exact variance o2,,,(£,) is not evaluated. We rely on (4.34) as

gauge of the ‘exact’ variance under the Lognormal.

Under Pareto Model

X ~» Pareto on (1,00) with 6§ = 2.9.

The asymptotic variance under the Pareto does not exist for § < 2.

flz) = 0z7%1 z>1>0,

F(zr) = 1—-1'9=1—(—)8
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Table 4.1: Simulation Results under Lognormal Model

Properties Sample Size 100 | Sample Size 1000
Emclén) 0.12190 0.11571
Varmc(én) 0.00026 0.00003
Emc (5%(6x)) 0.02783 0.02636
Varme (6%()) 0.00026 0.00003
coverage probability (95 %)
Using NONPAR Variance 96 % 93 %
Using PARAMETRIC Variance | 91 % 91 %

£ = — 0153

140600 —1)

02 ee(én) = 0.4932

Note that af"d(fn) under this model is evaluated (see Section 4.4.4). This number
has been verified using two approaches, namely by evaluating equation (4.17) and by

the expression of the variance in section 3.3.3 (via quantile density).
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Table 4.2: Simulation Results under Pareto Model

Properties Sample Size 100 | Sample Size 1000
Emc(én) 0.15486 0.15408
Varpc(én) 0.00293 0.00041

Enmc (5%(6)) 0.22466 0.44118

Varumc (6%(€n)) 0.16901 0.54548

coverage probabilities (95 %)

Using NONPAR Variance 80 % 89 %

Using PARAMETRIC Variance | 95 % 95 %

4.5.2 Monte Carlo Simulation - Quantile Density Approach

In this section, we determine whether the quantile density §(-) which appears in
the expression of 02(5,,), improves the estimation of this asymptotic variance of &,.
Nonparametric estimation results were good in the lognormal case, for this reason,
we will only consider the Pareto distribution in this subsection.

There is a tendency for spurious noise to appear in the tails of the estimates of §(-).
Hence, we need to adjust ¢;(-) appropriately to obtain accurate estimates aside from
employing variable smoothing parameters. Similarly, the symmetric density function

K is variable at the tails of the distribution.

Using the Histogram-Type Estimator

For 0.26 < p < 0.85,

- X np+n -n‘_x np-nb>:n
r(p) = {Xooweo 2 boyso

For p > 0.85,
I)) — ix<ﬂp>:n"I:<np—nb>:n}, b > O,

4
For p < 0.26,
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an(p) = WemezazXorenn} 5 0,

0.85336(1~p)?
where b = —i——’i)—.
n

Using Kernel-Type Estimator
Recall (4.33) the Jones Kernel estimator:

1=2

ha(w) = i(x‘-,.—x.-_lm)zk(___n_
+X

For 0.10 < p < 0.85,
1—Ju -l<ux<l

K(u) =
0 else
For p £ 0.10,
21 —u) 0<u<l
K(u) = ( ) 0<u<
0 else
For p > 0.85,
2(1 -1<u<0
Ky =4 20+ —lsus
else
where

b= b(n) = (nzogfn))'h'

4.6 Interpretation and Analysis of Results

By Theorem 3.1, we have shown that for large n, E,. is asymptotically normal, un-

biased and efficient with asymptotic variance given by (4.17). Under the population

Lognormal and Pareto models, these results are checked based on the knowledge of a

random sample from these populations. The estimators fn is still unbiased for very

large n. In order to check empirically whether our proposed procedure is effective

in providing correct inferences about the population, we judge by the coverage prob-

abilities for £. The coverage probability under the Lognormal is very close lo the
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Table 4.3: Sirnulation Results under the Pareto (Quantile Density)

Properties Sample Size 40 | Sample Size 100 | Sample Size 1000
HISTOGRAM-TYPE

Emc (5%(&)) 0.3192 0.3145 0.4681

Varpe (&2(5‘,,)) 0.1817 0.2631 0.5576

coverage probability (95%) | 86% 86% 91%
KERNEL-TYPE

Enmc (6%(&:)) 0.2868 0.3038 0.4816

Varac (62(6n)) 0.1442 0.2496 0.6038

coverage probability (95%) | 87% 86 % 91%

expected true coverage of 95% for both n = 100 and n = 1000. However, under the
Pareto Model this is not the case.

We then verify the unbiasedness and consistency properties of 5%(£,). Based on
the sample, under both models, the asymptotic variance estimator is unbiased for
n = 1000. We are not able to conclude fully the stability of our nonparametric
variance estimator, in the sense of having a small variance, based on the Monte Carlo
variance estimator of o?(£,). We try another approach at estimating this variance.
Since the terms in o2(,) depends on the quantity q(:) = !F—'l"(—-f’ we investigate
quantile density estimators for ¢(-). Upon using this approach to get an alternative
estimator for 02(€, ), we arrive at slightly improved results. By employing an estimator
of g(-) which is more efficient than the ones conducted, we would greatly improve our

estimator of o?(£). This would result in a coverage probability much closer to 95%.
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